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Abstract — In recent years, surface electromyography (sEMG) signals which reflect directly human muscle activity have played a 
significant role in control of a lower extremity exoskeleton system. Our study concentrates on simulation and processing techniques of 
sEMG signal that we are applying to our exoskeleton robot. Simulation and experiment results are presented and analyzed deeply to 
validate the techniques mentioned. These results are being applied in our ongoing design of a lower extremity exoskeleton system which is 
used to assist a soldier to walk with or without load carrying.  

Index Terms— Lower extremity exoskeleton, Model, sEMG, Simulation, Processing, Technique, Wavelet transform 

——————————      —————————— 

1 INTRODUCTION                                                                     
URFACE electromyography signal – based control is one 
of the successful and efficient control methods for a lower 
extremity exoskeleton robot. Many researchers have been 

considering deeply this technique. Most of them attempted 
sEMG signal which directly reflects human muscle activity as 
one of the most important control signals for their systems [7], 
[8], [10], [11]. Raw sEMG signals which are recorded by sur-
face electrodes, however, are not being used by many re-
searches because of certain drawbacks, such as very small and 
stochastic amplitude, unstable shape, and many noises [12]. 
Although sEMG signals can be measured carefully, their arti-
facts often occur to destroy and make them almost useless. As 
a result, it is necessary to process these raw signals to create 
significant control signals by applying sEMG processing tech-
niques [1], [2], [12].             

For the start point of this work, the first phase of this paper 
introduces three techniques to simulate sEMG signal. These 
techniques are based on three sEMG models: random variable 
model, layer volume conduction model, and fiber action po-
tential model. Simulation results of these models are obtained 
by using MatLab software. Three of these results illustrate 
clearly sEMG signals of Gastrocnemius Medialis, Tibialis An-
terior, and Soleus muscles during human gait cycle which will 
significantly impact on our ongoing design of a lower extremi-
ty exoskeleton system.                                  

In the second phase, a sEMG signal processing technique 
will be considered. Continuous wavelet transform (CWT) is 
used efficiently to analyze and remove noises from the raw 
sEMG signal which has many drawbacks as mentioned above. 
In order to generate control signals such as forces [7], [14], [16] 

in accordance with sEMG signals, a sEMG-to-force relationship 
is given. Results of this processing technique are analyzed by 
both simulation and experiment during human gait cycle. 

2 SIMULATION TECHNIQUES FOR SEMG SIGNAL 
SEMG simulation techniques are very plentiful and they de-
pend on actual aims. For simple goals, sEMG signal can be 
simulated as a random distribution [17]. To yield this work, a 
pseudo – Gaussian distribution with the roughly equal mean 
of zero is used. Fig. 1 presents the graph of sEMG which is 
plotted as a pseudo – Gaussian distribution. This simulation 
technique is also used to analyze the power spectrum density 
(PSD) of sEMG signal. 

In order to understand the relationship between physiolog-
ical and electrical models, a layer volume conduction model is 
used as shown in Fig. 2. According to this model, three layers 
of a physiological model (skin, fat tissue, and muscle fiber lay-
er) are substituted by components of an electrical model. Val-
ues of resistors and capacitors are computed by [13], [20] to 
simulate sEMG signal.  
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Fig. 1. Simulation of the Gaussian sEMG signal 

(a) Shape of the Gaussian sEMG signal 
(b) Power Spectrum Density of the Gaussian sEMG signal 
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To illustrate the extracellular action potential which is ob-
tained by using surface electrodes, a fiber action potential 
model is considered as presented in Fig. 3. The intracellular 
action potential, VF(z), in mV, is computed by (1) 

 
(1) 

 

where, z, in mm, is the distance along the fiber and λ, in mm-1, 
is a scale factor which can be defined by experiments [9]. By 
calculating the second derivative of VF(z), the equation of 
transmembrane current is yielded 
 

(2) 
 
where, KI is a proportionality constant [9], [18]. To obtain re-
sults in time domain, z is substituted by v.t, where v is the 
propagation velocity of the action potential and t is the time 
value. According to E.V. Stalberg et al in [18], this velocity can 
be calculated by using the value of the fiber diameter dm.  

The single fiber action potential, VAP (z), in mm, can be 
yielded by (3) 

 
(3) 

 
where, KV is a proportionality constant [19], and r is the dis-
tance between the fiber section S and the observation point 
[19]. Other papers calculated the above potential by using the 
convolution between the transmembrane current and the 
weighting function [9], [18]. The total of the single fiber action 
potentials is used to compute the motor unit action potential 

VMUAP(t) which can be obtained by using surface electrodes. In 
order to create a real sEMG signal, EMG(t), the additive noise, 
n(t), is considered as given in (4) 

(4) 
 
 where, n(t) is chosen as a white noise for our work. 

3 PROCESSING TECHNIQUE OF SEMG SIGNAL 
The most important characteristic of sEMG signals is to reflect 
directly the human muscle activities [12]. As a result, they can 
be used to create main input signals such as force or torque to 
control a lower extremity exoskeleton robot in accordance 
with the user’s motion intention. With their drawbacks as 
mentioned earlier, however, they have to be processed before 
using as input control signals.  

Fig. 4 introduces a control scheme for a lower extremity 
exoskeleton robot. The signal processing block contains some 
steps which are used to process sEMG signal as expressed be-
low: 

(a) After acquisition, raw sEMG signals should be ampli-
fied with suitable gains. 

(b) Amplified sEMG signals will be modified by using 
rectification or Root Mean Square (RMS) methods. 

(c) Modified sEMG signals will be filtered by applying a 
FIR low pass filter with a 2-10 Hz cut-off frequency 
[17].  

In the first step, to remove bias, it is necessary to calculate the 
mean of whole sEMG signals and then subtract it from each 
data point. In the second step, a full-wave rectification method 
is usually used to obtain the absolute values of sEMG signals. 
The other method which uses the definition of RMS is applied 
successfully in many researches [1], [12] because it gives a sig-
nificant measure of the signal power.  

In order to remove noises from sEMG signals to get the lin-
ear envelope of the signal as mentioned in the third step, a low 
pass filter can be used. In our work, to generate a good de-
noised sEMG signal, the continuous wavelet transform (CWT) 
will be used. The definition of CWT [3], [4] is expressed in (5) 

 
(5) 

 
 

where EMG(t) is the analyzed signal, w(t) is a mother wavelet 
function, b is a translation index, and a is scale parameter [5]. 
By applying CWT, noises in sEMG signal can be removed suc-
cessfully because the signal energy only concentrates into few-
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Fig. 4. A normal sEMG-based control scheme for a lower extremity 
exoskeleton system 

 

 

1
2

3
45

r

Rs

RFT

RM V1

CFT

CM

Rs

RFT

RM V2

CFT

CM

Rs

RFT

RM V3

CFT

CM
RFT

1

2

3

 
Fig. 2. Layer volume conduction model 
1-Skin, 2 – Fat Tissue, 3 – Muscle Fiber, 4 – Motor Unit, 5 – Bone 
r – radius of motor unit 
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Fig. 3. A fiber action potential model 
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er coefficients while noise energy does not.  
Though the amplitude of the processed sEMG signal at any 

instant in time is random, it is roughly proportional to the 
force exerted [1], [12], [21]. In this investigation, an EMG-to-
force function is used to calculate corresponding force F(A, B) 
[21] 

(6) 

where EMG(t) denotes the processed signal and A, B are two 
muscle parameters. These parameters belong to the type of 
muscle and they can be defined by experiments. For the calcu-
lation of sEMG-to-force, a normalization with the peak of Max-
imum Voluntary Contraction (MVC) is normally used [12], [14] 
to compare sEMG readings between subjects. 

4 SIMULATION AND EXPERIMENT RESULTS 
Although sEMG signals belong to many parameters, in our 
work, we only concentrate on simulation results in time do-
main concerning our experiment results. The intracellular ac-
tion potential and the transmembrane current are plotted in 
Fig. 5(a) and Fig. 5(b), respectively. In Fig. 5(a), algebraic signs 
of the first derivative of V(z) affect the orientation of the di-
poles: depolarization with the positive sign and repolarization 
with the negative sign. Fig. 5(b) expresses different shapes of 
the transmembrane current with different values of the fiber 
diameter: dmin, dmax, dTibialis Anterior, and dGastrocnemius Medialis . 
These values can be found well in [19]. To understand more 
clearly about the effect of the fiber diameter, Fig. 6 shows in-
tracellular action potentials which belong to the change of this 
parameter. According to this relationship, minimum and max-
imum values of the intracellular action potential are shown 
stably, however, corresponding times are changeable. 

To calculate the singly extracellular action potential, we can 
use either the definition of convolution or applying (3). Fig. 7 
presents simulation results of an extracellular action potential 
by calculating the convolution of the transmembrane current 
and the weighting function. This weighting function is defined 
by J. Duchene et al in [9]. Algorithms of Fast Fourier Transform 
(FFT) and Inverse Fast Fourier Transform (IFFT) are also used to 
compute this extracellular action potential as signal train in 
Fig. 7(b). 

By applying (4), sEMG signal and its PSD can be formed as 
presented in Fig. 8. Here, P.D.Welch’s method is used to ex-
press the PSD of sEMG signal by using the corresponding 
function in MatLab software. This simulation result is similar 
in comparison with the Gaussian sEMG signal in Fig. 1. The 
shape of the simulated sEMG signal is clearly appropriate in 
accordance with the real signal.  

In order to match with experiment results, three lower 
muscles of human leg are considered during the gait cycle. A 
human gait cycle is normally divided into two phases: stance 
phase and swing phase. These phases will be divided into sev-
en smaller phases which can be found clearly in [22]. Three 
concerned human lower muscles are Gastrocnemius Medialis, 
Soleus, and Tibialis Anterior. The timing of the muscle activa-
tion and the intensity of muscle contraction in accordance with 
the different gait phases can be found in [19]. Simulation re-
sults of these lower muscles are shown in Fig. 9 during three 

human gait cycles. These simulation results have more signifi-
cance to control our lower extremity exoskeleton which assists 
humans during normal walking with or without load carry-
ing. 

To apply a signal processing technique, the real sEMG sig-
nal of Gastrocnemius Medialis muscle is collected during a 
human gait cycle by our experiment. The raw sEMG signal in 
Fig. 10(a) will be processed by using Signal Processing Toolbox 
in Matlab software version 2011b. First, any DC offset will be 
removed from the raw sEMG signal, and then this signal is 
rectified by applying a full-wave rectification as shown in Fig. 
10(b). Here, we can also use the RMS method to obtain abso-
lute values of sEMG signal as plotted in Fig. 11(a). This abso-
lute signal shape is similar to the rectified signal in Fig. 10(b). 
This rectified signal is then filtered by applying a low pass 
filter of a 10Hz cut-off frequency with the zero-phase digital 
filtering. Here, we also use the sampling frequency of 1000Hz 
and the 5th order filter. The filtered sEMG signal is shown in 
Fig. 11(b). In order to create the corresponding force, the EMG-
to-force relationship in (6) is used. As a result, the obtained 
force in Fig. 11(c) can be used to generate the command signal 
as mentioned earlier in the control scheme for a lower extremi-
ty exoskeleton robot. 

In this paper, the wavelet transform is also used to process 
sEMG signal by applying Wavelet Toolbox Main Menu in 
MatLab software. Normally, this technique can be used as a 
filter. For our work, it is applied to remove noises from modi-
fied sEMG signal after using RMS method. Result of this pro-
cessing is expressed in Fig. 12. Wavelet function of Daubechies 
db3, level 5 which has a matched shape with the motor action 
unit potential is used for our work. Fig. 13 shows more infor-
mation of residuals for this processing, such as histogram, 
cumulative histogram, autocorrelations, and FFT-spectrum. 
According to these simulation results, most of the noises are 
removed effectively from sEMG signal to create the command 
signal more exactly.  
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Fig. 5. The intracellular action potential and the transmembrane current 

(a) The intracellular action potential and its derivatives 
(b) The transmembrane current belongs to change of fober di-

ameter: dmin  = 25µm, dmax = 85 µm, dTibialis  = 57 µm and dGas-

trocnemius  = 54 µm. 
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4 CONCLUSION 
This paper presents simulation and processing techniques of 
sEMG signal as the first part of our work in which a sEMG – 
based control scheme for a lower extremity exoskeleton robot 
has been designed successfully. Simulation results obtained 
play a significant role in accordance with our experiments, 
especially, in design of our system to assist soldiers who wear 
exoskeleton robots to work under hard conditions. By apply-
ing improved signal processing techniques, sEMG signal re-
cording can be used efficiently to create the corresponding 
force which will be made the command signal for our exoskel-
eton system. For our work in the near future, we will develop 
strongly these techniques to design an exoskeleton – assisted 
system which can be applied widely in our real life. 
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Fig. 10.  Real sEMG signal from Gastrocnemius medialis during stride 

(c) Raw signal 
(d) Rectified signal 

 
 
 
 
 

 

 
Fig. 9.  Simulation of sEMG signal during 3 gait cycles 

(a) Gastrocnemius Medialis 
(b) Tibialis Anterior 
(c) Soleus 

 
 
 
 
 
 
 
 
 

 

 
Fig. 10.  Real sEMG signal from Gastrocnemius medialis during gait 
cycle 

(a) Raw signal 
(b) Rectified signal 

 
 
 
 
 

 
Fig. 6. The intracellular action potential belongs to the change of 
the fiber diameter. 

(a) Intracellular action potentials of Tibialis anterior mus-
cle, dmin, and dmax.  

(b) Change of intracellular action potentials from dmin  = 
25µm, up to dmax = 85 µm. 

 
 
 
 
 
 
 
 
 

 

 
Fig. 7. A single fiber and motor unit action potential 

(a) A single muscle fiber action potential which is calculated 
by the convolution of the transmembrane current and the 
weighting function. 

(b) The motor unit action potential 

 
 
 
 
 
 
 
 

 

 
Fig. 8.  Simulation of sEMG signal and its PSD 

(a) sEMG signal with noises 
(b) PSD of sEMG signal 
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